Lecture 1 – An introduction to database systems and data modeling

Gianluca Quercini

gianluca.quercini@centralesupelec.fr

Master DSBA 2020 - 2021

What you will learn

In this lecture you will learn:

- What a database system is.
- Why a database system is important.
- What a **data model** is.
- The main notions of the relational data model.
- How to design a database with the entity-relationship model.

What is a database system?

Definition (Database system)

A database system is a computerized system whose overall purpose is to store data and to allow users to retrieve and update that data on

demand. • Source

- Data. Anything that matters to the user.
 - Example. Personal information on the employees of a company.
- Database systems allow users a number of operations on the data.
 - **Read** operations: retrieve some data.
 - Write operations: store, update, delete some data.

Data: an example

We identify three main components in data:

- Entities. What the data describes.
 - Example. Employees, departments.
- Attributes. Properties of the entities.
 - Example. First name, last name, position.
- Relationships. How entities relate to each other.
 - Example. Joseph Bennet works in the Administration department.

		Departmer	nts			
First name	Last name	Position	Salary	Department	Name	Budget
Joseph	Bennet	Office assistant	55000	Administration	Administration	300000
John	Doe	Budget manager	60000	Finance	Education	150000
Patricia	Fisher	Secretary	45000	Education	Finance	600000
Mary	Green	Credit analyst	65000	Finance	Human resources	150000
William	Russel	Guidance counselor	35000	Education		
Elizabeth	Smith	Accountant	45000	Finance		
Michael	Watson	Team leader	80000	Administration		
Jennifer	Young	Assistant director	120000	Administration		

Database system components

- Users. Possibly many accessing the database system concurrently.
- Applications. Accessing the database system on behalf of users.
- DataBase Management System (DBMS). Manages all requests for access to the database.
- Database. Collection of data.

Why database systems?

What is a database?

Definition (Database)

A database is a collection of data that is **persistent**, **integrated** and **shared**.

- Persistent. Data are only removed at the user's request.
- Integrated. Unification of several otherwise distinct files.
 - **Redundancy** might partly or completely eliminated.
- **Shared.** Different users can have access to the same data, possibly at the same time.

IS Users access the data through the DataBase Management System (DBMS).

DBMS functions

- Query/update. Allow users to retrieve and modify data.
- Indexing. Optimize the retrieval of data from the database.
- Integrity. Preserve the relationship among different related data.
- Security. Limit data access to authorized users or programs.
- **Concurrency.** Prevent two users from interfering with each other when they access the same data.
- **Backup/Recovery.** Ensure that the database can be restored to a valid state after a failure.

The DBMS hides the data storage hardware details from the user by using a **data model**.

Data model

Data model

Definition (Data model)

A data model is an abstract, self-contained, logical definition of the structure of the data and the operators that manipulate the data.

- A data model defines the representation of:
 - The **entities** (how is an *employee* represented?).
 - The **attributes** (how is *salary* represented?). ۲
 - The relationships (how is the fact that an employee works in a certain department represented?).
- Users interact directly with the data model.
 - The DBMS hides the way data are physically stored in the machine.

Major data models

- Relational data model (70s).
- Object-oriented data model (90s).
- NoSQL data models (2000).
 - Key-value data model.
 - **Document** data model.
 - Column family data model.
 - Graph data model.

In this course, we study the relational and the NoSQL data models, in particular document and graph models.

Relational data model

• Proposed by Edgar F. Codd (English computer scientist, 1923-2003) in 1970.

Definition (Relational data model)

The **relational data model**, (or, simply, **relational model**) is characterized by the following three aspects.

- Structural aspect. The data in the database is perceived by the user as tables (or, relations), and nothing but tables.
- Manipulative aspect. The operators available to the user for manipulating the tables and derive tables from tables.
- Integrity aspect. The tables satisfy certain integrity constraints.

Structure of the data: tables

In the relational model, a database is a collection of tables, or relations.

- A row in a table (or, a tuple in a relation) describes an entity.
- A column in a table (or, an element in a tuple) represents an attribute of an entity.
- A **relationship** between two entities is expressed as common values in one or more columns of their respective tables.
- The relational model provides an *open-ended* collection of **scalar types** (e.g., *boolean*, *integer* . . .).
 - Open-ended: users are allowed to define custom types.

The values in a given column must have the same type.

Example of relational tables

	Employee									
	codeE	first	last	position	salary	codeD	+	— Att	ributes (sche	ma)
ſ	1	Joseph	Bennet	Office assistant	55,000	14				
	2	John	Doe	Budget manager	60,000	62				
	3	Patricia	Fisher	Secretary	45,000	25			Departmen	t
J	4	Mary	Green	Credit analyst	65,000	62		codeD	nameD	budget
	5	William	Russel	Guidance counselour	35,000	25		14	Administration	300,000
	6	Elizabeth	Smith	Accountant	45,000	62		25	Education	150,000
	7	Michael	Watson	Team leader	80,000	14		62	Finance	600,000
l	8	Jennifer	Young	Assistant director	120,000	14		45	Human Resources	150,000
	Attribute value			t						
	Rela				tic	onship				

Entities

Relational algebra

- The relational model provides some operators to manipulate tables.
- These operators are collectively known as the relational algebra.

Definition (Relational algebra)

The **relational algebra** is a collection of **operators** that take tables as their operands and return a table as their result (*relational closure property*). • Source

The relational algebra consists of 8 operators organized into two groups:

- Set operators. Union, intersection, difference and Cartesian product.
- Relational operators. Select (a.k.a, restrict), project, join and divide.

Original operators of the relational algebra

Integrity constraints

Definition

An **integrity constraint** is a boolean expression that is associated with a database and is required to evaluate at all times to TRUE. Source

Examples of integrity constraints:

- **Type constraints.** A value in a relational table column must have a specific type.
- Key constraints. No two distinct employees have the same employee number.
- Foreign key constraints. Every employee involves an existing department.
- The salary of an employee must be between 30K and 150K.
- The salary of a *credit analyst* must not exceed the salary of an *assistant director*.

Correctness and consistency

The database system **cannot check** if the data is **correct**.

Closed world assumption

Everything that is in the database is assumed to be **true**; everything that is **not** in the database is assumed to be **false**.

The database system **can check** if the data is **consistent**.

- The data is consistent if no integrity constraint is violated.
- **Correct** implies **consistent** (but not the other way round).
- **Inconsistent** implies **incorrect** (but not the other way round).

Definition (Key)

A set X of columns of a table R is **key** (a.k.a, **superkey**) of R if and only if there are not two or more distinct rows of R that have the same value for all the columns in X.

Department			
codeD	nameD	budget	
14	Administration	300,000	
25	Education	150,000	
62	Finance	600,000	
45	Human Resources	150,000	

Which of the following sets is a key?

- {codeD, nameD, budget}
- {budget}
- {codeD, nameD}
- {codeD}
- {nameD}
- Simple key. Key composed of one column.
- Composite key. Key composed of more than one column.

Gianluca Quercini

Definition (Key)

A set X of columns of a table R is **key** (a.k.a, **superkey**) of R if and only if there are not two or more distinct rows of R that have the same value for all the columns in X.

Department			
codeD	nameD	budget	
14	Administration	300,000	
25	Education	150,000	
62	Finance	600,000	
45	Human Resources	150,000	

Which of the following sets is a key?

- {codeD, nameD, budget} \checkmark
- {budget}
- {codeD, nameD}
- {codeD}
- {nameD}
- Simple key. Key composed of one column.
- Composite key. Key composed of more than one column.

Gianluca Quercini

Definition (Key)

A set X of columns of a table R is **key** (a.k.a, **superkey**) of R if and only if there are not two or more distinct rows of R that have the same value for all the columns in X.

Department			
codeD	nameD	budget	
14	Administration	300,000	
25	Education	150,000	
62	Finance	600,000	
45	Human Resources	150,000	

Which of the following sets is a key?

- {codeD, nameD, budget} \checkmark
- {budget} X
- {codeD, nameD}
- {codeD}
- {nameD}
- Simple key. Key composed of one column.
- Composite key. Key composed of more than one column.

Gianluca Quercini

Definition (Key)

A set X of columns of a table R is **key** (a.k.a, **superkey**) of R if and only if there are not two or more distinct rows of R that have the same value for all the columns in X.

Department			
codeD	nameD	budget	
14	Administration	300,000	
25	Education	150,000	
62	Finance	600,000	
45	Human Resources	150,000	

Which of the following sets is a key?

- {codeD, nameD, budget} 🗸
- {budget} X
- {codeD, nameD} 🗸
- $\{codeD\}$
- {nameD}
- Simple key. Key composed of one column.
- Composite key. Key composed of more than one column.

Gianluca Quercini

Definition (Key)

A set X of columns of a table R is **key** (a.k.a, **superkey**) of R if and only if there are not two or more distinct rows of R that have the same value for all the columns in X.

Department			
codeD	nameD	budget	
14	Administration	300,000	
25	Education	150,000	
62	Finance	600,000	
45	Human Resources	150,000	

Which of the following sets is a key?

- {codeD, nameD, budget} \checkmark
- {budget} X
- {codeD, nameD} 🗸
- {codeD} 🗸
- $\{nameD\}$
- Simple key. Key composed of one column.
- Composite key. Key composed of more than one column.

Gianluca Quercini

Definition (Key)

A set X of columns of a table R is **key** (a.k.a, **superkey**) of R if and only if there are not two or more distinct rows of R that have the same value for all the columns in X.

Department			
codeD	nameD	budget	
14	Administration	300,000	
25	Education	150,000	
62	Finance	600,000	
45	Human Resources	150,000	

Which of the following sets is a key?

- {codeD, nameD, budget} \checkmark
- {budget} X
- {codeD, nameD} 🗸
- {codeD} 🗸
- {nameD} ✓
- Simple key. Key composed of one column.
- Composite key. Key composed of more than one column.

Gianluca Quercini

Definition (Candidate Key)

A candidate key of a table R is a key X such that no proper subset of X is a key.

Department			
codeD	nameD	budget	
14	Administration	300,000	
25	Education	150,000	
62	Finance	600,000	
45	Human Resources	150,000	

Which of the following sets is a **can-didate key**?

- {codeD, nameD, budget}
- {codeD, nameD}

• $\{codeD\}$

- $\{nameD\}$
- A table may have several candidate keys.
- One candidate key is chosen as the **primary key**.

Definition (Candidate Key)

A candidate key of a table R is a key X such that no proper subset of X is a key.

Department			
codeD	nameD	budget	
14	Administration	300,000	
25	Education	150,000	
62	Finance	600,000	
45	Human Resources	150,000	

- {codeD, nameD, budget} ×
- {codeD, nameD}
- $\{codeD\}$
- {nameD}
- A table may have several candidate keys.
- One candidate key is chosen as the **primary key**.

Definition (Candidate Key)

A candidate key of a table R is a key X such that no proper subset of X is a key.

Department			
codeD	nameD	budget	
14	Administration	300,000	
25	Education	150,000	
62	Finance	600,000	
45	Human Resources	150,000	

- {codeD, nameD, budget} ×
- {codeD, nameD} 🗙
- $\{codeD\}$
- {nameD}
- A table may have several candidate keys.
- One candidate key is chosen as the **primary key**.

Definition (Candidate Key)

A candidate key of a table R is a key X such that no proper subset of X is a key.

Department			
codeD	nameD	budget	
14	Administration	300,000	
25	Education	150,000	
62	Finance	600,000	
45	Human Resources	150,000	

- {codeD, nameD, budget} ×
- {codeD, nameD} 🗙
- {codeD} \checkmark
- $\{nameD\}$
- A table may have several candidate keys.
- One candidate key is chosen as the **primary key**.

Definition (Candidate Key)

A candidate key of a table R is a key X such that no proper subset of X is a key.

Department							
codeD	nameD	budget					
14	Administration	300,000					
25	Education	150,000					
62	Finance	600,000					
45	Human Resources	150,000					

- {codeD, nameD, budget} ×
- {codeD, nameD} 🗙
- {codeD} \checkmark
- $\{nameD\} \checkmark$
- A table may have several candidate keys.
- One candidate key is chosen as the **primary key**.

Foreign keys

Definition (Foreign key)

Let T_1 and T_2 be two tables. Let Y be a set of columns of T_1 . Y is a **foreign key** of T_1 on T_2 if and only if Y is a key in T_2 .

	Employee								
codeE	first	last	position	salary	codeD				
1	Joseph	Bennet	Office assistant	55,000	14				
	lahn	Dee	Budget menager	60.000	60			Departmen	t
2	Jonn	Doe	Budget manager	60,000	62	cod	eD	nameD	budget
3	Patricia	Fisher	Secretary	45,000	25	1.	4	Administration	300,000
4	Mary	Green	Credit analyst	65,000	62	2	5	Education	150.000
5	William	Russel	Guidance counselour	35,000	25	6	2	Finance	600,000
6	Elizabeth	Smith	Accountant	45,000	62	4	5	Human	150,000
7	Michael	Watson	Team leader	80,000	14	4	•	nesources	
8	Jennifer	Young	Assistant director	120,000	14				

Foreign keys

- Simple foreign keys consist of one column.
- Composite foreign keys consist of more than one column.
- The columns of a foreign key **must have the same type** of the columns they reference.

The columns of a foreign key **do not have to have the same name** as the columns they reference.

• Although in practice it is often the case (simplicity).

The DBMS uses foreign keys to enforce the **referential integrity constraint**.

Definition (Referential integrity constraint)

Referential integrity means that the database must not contain any unmatched foreign key value. • Source

Example

An employee **cannot** work in a department that does not exist.

• **Question:** Does this database violate the referential integrity constraint?

	Employee									
codeE	first	last	position	salary	codeD					
1	Joseph	Bennet	Office assistant	55,000	14					
2	John	Doe	Budget manager	60.000	62		Department			
	001111	DOC	Dudget manager	00,000	02	c	odeD	nameD	budget	
3	Patricia	Fisher	Secretary	45,000	25		14	Administration	300,000	
4	Mary	Green	Credit analyst	65,000	62		25	Education	150.000	
5	William	Russel	Guidance counselour	35,000	25		62	Finance	600,000	
6	Elizabeth	Smith	Accountant	45,000	62		45	Human	150,000	
7	Michael	Watson	Team leader	80,000	14		t	Hesources		
8	Jennifer	Young	Assistant director	120,000	14					

- **Question:** Does this database violate the referential integrity constraint?
- Answer: No.

	Employee								
codeE	first	last	position	salary	codeD				
1	Joseph	Bennet	Office assistant	55,000	14				
2	John	Doe	Budget manager	60.000	62			Departmen	t
-	001111	DOC	Dudget manager	00,000	02	С	odeD	nameD	budget
3	Patricia	Fisher	Secretary	45,000	25		14	Administration	300,000
4	Mary	Green	Credit analyst	65,000	62		25	Education	150,000
5	William	Russel	Guidance counselour	35,000	25		62	Finance	600,000
6	Elizabeth	Smith	Accountant	45,000	62		45	Human	150,000
7	Michael	Watson	Team leader	80,000	14		Ť	Hesources	
8	Jennifer	Young	Assistant director	120,000	14				

• **Question:** Does this database violate the referential integrity constraint?

	Employee								
codeE	first	last	position	salary	codeD				
1	Joseph	Bennet	Office assistant	55,000	14				
2	John	Doe	Budget manager	60.000	62			Departmen	t
2	001111	DOC	Dudget manager	00,000	02	CC	deD	nameD	budget
3	Patricia	Fisher	Secretary	45,000	25		14	Administration	300,000
4	Mary	Green	Credit analyst	65,000	62		25	Education	150.000
5	William	Russel	Guidance counselour	35,000	25		62	Finance	600,000
6	Elizabeth	Smith	Accountant	45,000	62		45	Human	150,000
7	Michael	Watson	Team leader	80,000	14		t	Hesources	
8	Jennifer	Young	Assistant director	120,000	57				

- **Question:** Does this database violate the referential integrity constraint?
- Answer: Yes.

	Employee									
codeE	first	last	position	salary	codeD					
1	Joseph	Bennet	Office assistant	55,000	14					
2	John	Doe	Budget manager	60.000	62		Department			
2	001111	DOC	Dudget manager	00,000	02	•	odeD	nameD	budget	
3	Patricia	Fisher	Secretary	45,000	25		14	Administration	300,000	
4	Mary	Green	Credit analyst	65,000	62		25	Education	150,000	
5	William	Russel	Guidance counselour	35,000	25		62	Finance	600,000	
6	Elizabeth	Smith	Accountant	45,000	62		45	Human	150,000	
7	Michael	Watson	Team leader	80,000	14		t	nesources		
8	Jennifer	Young	Assistant director	120,000	57					

• What happens if you want to change the code of a department?

	Employee								
codeE	first	last	position	salary	codeD				
1	Joseph	Bennet	Office assistant	55,000	14	[
2	John	Doe	Budget manager	60 000	62			Departmen	t
-	00	200	Budgermanager	00,000	02		codeD	nameD	budget
3	Patricia	Fisher	Secretary	45,000	25		14	Administration	300,000
4	Mary	Green	Credit analyst	65,000	62		25	Education	150.000
5	William	Russel	Guidance counselour	35,000	25		62	Finance	600,000
6	Elizabeth	Smith	Accountant	45,000	62		45	Human	150,000
7	Michael	Watson	Team leader	80,000	14		Ť	Resources	
8	Jennifer	Young	Assistant director	120,000	14				

- What happens if you want to change the code of a department?
- It depends on how you define the foreign key constraint.
- Many options are possible:
 - No Action. The DBMS will block the update.
 - Cascade. The DBMS will update the referring values.
 - Set NULL. The DBMS will set the referring values to NULL.
 - **Set Default**. The DBMS will set the referring values to their default value.
- Similar options apply when deleting a department.

• What happens if you try to **delete** the table Department?

- What happens if you try to **delete** the table Department?
- The DBMS won't allow that.
- Before deleting the table Department you can:
 - Delete the table Employee, or:
 - Remove the foreign key constraint on the table Employee.

Database design

Definition (Database design)

Given some body of data to be represented in a database, **database design** is the process by which we create a suitable **conceptual schema** for that data. • Source

Definition (Conceptual schema)

The conceptual schema of a database consists of:

- Entities. Real-world objects about which we collect data.
- Attributes. Properties of the entities.
- Relationships. Association among entities.

Source

Example

- The school has several branches across the region.
- The school has several customers and their personal data is needed.
- Each customer is enrolled in a specific branch.
- Customers must take an exam at any branch to get a driver's license.
- For each exam, we keep the date and the outcome (pass/fail).
- A customer can take many exams at the same branch.
- Oriver's licenses are issued by a branch and have a unique license number.
- Driver's licenses are defined by a category (that limits the types of vehicles that the owner can drive) and has an expiry date.
- A customer can have more than one driver's license.

Example

- The school has several branches across the region.
- The school has several customers and their personal data is needed.
- Each customer is enrolled in a specific branch.
- Customers must take an exam at any branch to get a driver's license.
- For each exam, we keep the date and the outcome (pass/fail).
- A customer can take many exams at the same branch.
- Oriver's licenses are issued by a branch and have a unique license number.
- Driver's licenses are defined by a category (that limits the types of vehicles that the owner can drive) and has an expiry date.
- A customer can have more than one driver's license.

Example

- The school has several branches across the region.
- The school has several customers and their personal data is needed.
- Each customer is enrolled in a specific branch.
- Customers must take an exam at any branch to get a driver's license.
- For each exam, we keep the date and the outcome (pass/fail).
- A customer can take many exams at the same branch.
- Oriver's licenses are issued by a branch and have a unique license number.
- Driver's licenses are defined by a category (that limits the types of vehicles that the owner can drive) and has an expiry date.
- A customer can have more than one driver's license.

Example

- The school has several branches across the region.
- The school has several customers and their personal data is needed.
- Each customer is enrolled in a specific branch.
- Customers must take an exam at any branch to get a driver's license.
- For each exam, we keep the date and the outcome (pass/fail).
- A customer can take many exams at the same branch.
- Driver's licenses are issued by a branch and have a unique license number.
- Driver's licenses are defined by a category (that limits the types of vehicles that the owner can drive) and has an expiry date.
- A customer can have more than one driver's license.

Example

- The school has several branches across the region.
- The school has several customers and their personal data is needed.
- Each customer is enrolled in a specific branch.
- Customers must take an exam at any branch to get a driver's license.
- For each exam, we keep the date and the outcome (pass/fail).
- A customer can take many exams at the same branch.
- Driver's licenses are issued by a branch and have a unique license number.
- Driver's licenses are defined by a category (that limits the types of vehicles that the owner can drive) and has an expiry date.
- A customer can have more than one driver's license.

Database design

Example

- The school has several branches across the region.
- The school has several customers and their personal data is needed.
- Each customer is enrolled in a specific branch.
- Customers must take an exam at any branch to get a driver's license.
- For each exam, we keep the date and the outcome (pass/fail).
- A customer can take many exams at the same branch.
- Driver's licenses are issued by a branch and have a unique license number.
- Driver's licenses are defined by a category (that limits the types of vehicles that the owner can drive) and has an expiry date.
- A customer can have more than one driver's license.

Database design

Example

- The school has several branches across the region.
- The school has several customers and their personal data is needed.
- Each customer is enrolled in a specific branch.
- Customers must take an exam at any branch to get a driver's license.
- For each exam, we keep the date and the outcome (pass/fail).
- A customer can take many exams at the same branch.
- Driver's licenses are issued by a branch and have a unique license number.
- Driver's licenses are defined by a category (that limits the types of vehicles that the owner can drive) and has an expiry date.
- A customer can have more than one driver's license.

Database design

Example

- The school has several branches across the region.
- The school has several customers and their personal data is needed.
- Each customer is enrolled in a specific branch.
- Customers must take an exam at any branch to get a driver's license.
- For each exam, we keep the date and the outcome (pass/fail).
- A customer can take many exams at the same branch.
- Driver's licenses are issued by a branch and have a unique license number.
- Driver's licenses are defined by a category (that limits the types of vehicles that the owner can drive) and has an expiry date.
- A customer can have more than one driver's license.

Database design

Example

- The school has several branches across the region.
- The school has several customers and their personal data is needed.
- Each customer is enrolled in a specific branch.
- Customers must take an exam at any branch to get a driver's license. •
- For each exam, we keep the date and the outcome (pass/fail).
- A customer can take many exams at the same branch. •
- Driver's licenses are issued by a branch and have a unique license number.
- Driver's licenses are defined by a category (that limits the types of vehicles that the owner can drive) and has an expiry date.
- A customer can have more than one driver's license.

Example

We want to design the database of a driving school in Île-de-France.

- The school has several branches across the region.
- The school has several customers and their personal data is needed.
- Each customer is enrolled in a specific branch.
- Customers must take an exam at any branch to get a driver's license.
- For each exam, we keep the date and the outcome (pass/fail).
- A customer can take many exams at the same branch.
- Driver's licenses are issued by a branch and have a unique license number.
- Driver's licenses are defined by a category (that limits the types of vehicles that the owner can drive) and has an expiry date.
- A customer can have more than one driver's license.
- One of the best-known technique for representing the conceptual schema of a database is a **entity-relationship** (ER) diagram.

Gianluca Quercini

Entity-Relationship (ER) diagrams

- As their name implies, **ER diagrams** consist of **entities** and **relationships**.
- First, we need to identify the entities.
- Next, we need to identify the relationships.
- Both entities and relationships can have attributes.
- Relationships have cardinalities.

An ER diagram is a conceptual schema of a database.
 Eventually, entities and relationships are translated into a collection of tables: the logical schema of the database.

Entities

Example

- The school has several branches across the region.
- The school has several customers and their personal data is needed.
- Each customer is enrolled in a specific branch.
- Customers must take an exam at any branch to get a driver's license.
- For each exam, we keep the date and the outcome (pass/fail).
- A customer can take many exams at the same branch.
- Driver's licenses are issued by a branch and have a unique license number.
- Driver's licenses are defined by a category (that limits the types of vehicles that the owner can drive) and has an expiry date.
- A customer can have more than one driver's license.

Entities

Customer

Branch

DriverLicense

Gianluca Quercini

Introduction to Databases

Master DSBA 2020 - 2021 32 / 44

Relationships

Example

- The school has several branches across the region.
- The school has several customers and their personal data is needed.
- Each customer is enrolled in a specific branch.
- Customers must take an exam at any branch to get a driver's license.
- For each exam, we keep the date and the outcome (pass/fail).
- A customer can take many exams at the same branch.
- Driver's licenses are issued by a branch and have a unique license number.
- Driver's licenses are defined by a category (that limits the types of vehicles that the owner can drive) and has an expiry date.
- A customer can have more than one driver's license.

Relationships

- A cardinality is expressed as a pair (*min*, *max*).
- The **minimum cardinality** in (1, 1) means that a customer is enrolled in at least 1 branch.
- The maximum cardinality in (1, 1) means that a customer is enrolled in at most 1 branch.
- The cardinality (0, n) means that a branch can have between 0 and many (n) customers.
- The only possible values of a cardinality are: 0, 1, n.

Which cardinalities on the Customer side?

Which cardinalities on the Customer side?

Which cardinalities on the Branch side?

Which cardinalities on the Branch side?

Attributes

 Underlined attributes of an entity are unique identifiers of that entity (primary keys).

• Relationships can have attributes too.

From the conceptual to the logical schema

Branch DriverLicense code_customer Branch DriverLicense first_name branch_name license_number last_name address address phone_number birth date category

- Each entity is translated into a table.
- Each attribute of the entity is a column in the corresponding table.

Translating entities and attributes

- Customer(<u>code_customer</u>, first_name, last_name, address, phone_number, birth_date)
- Branch(<u>branch_name</u>, address)
- DriverLicense(<u>license_number</u>, category, expiry_date)

Solution Underlined columns of a table are part of the primary key of that table.

Gianluca Quercini

Translating relationships

One-to-many relationship. $(_{-}, 1) - (_{-}, n)$

- Take the **primary key** from Branch (**n** side) and add it to the attributes of Customer (**1** side).
- Customer(<u>code_customer</u>, first_name, last_name, address, phone_number, birth_date, branch_name)
- Customer(branch_name) foreign key to Branch(branch_name).
- Same rule applies if the relationship is **one-to-one** (_, **1**) (_, **1**)

Translating relationships

Many-to-many relationship. $(_, n) - (_, n)$

- The relationship becomes a **table**.
- Attributes of the new table: **primary keys** of the two related entities + **attributes of the relationship**.
- Exam(<u>code_customer</u>, <u>branch_name</u>, <u>exam_date</u>, outcome)
- code_customer foreign key to Customer(code_customer).
- branch_name **foreign key** to Branch(branch_name).

References

• Date, Christopher John. *An introduction to database systems*. Pearson Education India, 2004. • Click here